STU-GTIIT光学论坛(No.15)
报告题目: Microcavity exciton polaritons for classical and quantum information processing at room temperature(全英报告)
报 告 人:Sanjib Ghosh Quantum State of Matter Division(Beijing Academy of Quantum Information Sciences, Beijing, China)
报告地点:at lecture hall E410 in the north campus of GTIIT and through zoom (https://technion.zoom.us/j/95487290730)
报告时间:2024年3月19日 17:00
报告摘要:
Microcavity exciton polaritons are versatile hybrid quasi-particles, combining excellent optical properties like strong nonlinearity and ultralow threshold lasing with electronic features like coupling with electromagnetic fields and spin-dependent response [1]. Moreover, recent advancements in room-temperature exciton polaritons inspire developments of practical devices [2]. In this talk, we highlight applications of room temperature exciton polaritons in classical and quantum information processing. We show that the ultrafast dynamics of exciton polaritons in microcavities can be utilized for neuromorphic computing [3, 4], and optoelectronic devices like lasers [5-7], spin-
polarizing beam splitter or a spin-based NOT gate [8]. In the quantum domain, strongly nonlinear exciton polaritons enable single photon generation, which can be made robust using topologically nontrivial geometries. Finally, we present recent ideas for quantum computing using exciton polariton condensates [9] and unconventional approaches, such as quantum reservoir computing, which is based on networks of imperfect qubits, particularly suited for exciton polaritons [10].
1. Byrnes, T., N.Y. Kim, and Y. Yamamoto, Exciton–polariton condensates. Nature Physics, 2014. 10(11): p. 803-813.
2. Ghosh, S., et al., Microcavity exciton polaritons at room temperature. Photonics Insights, 2022. 1(1): p. R04-R04.
3. Opala, A., et al., Neuromorphic Computing in Ginzburg-Landau Polariton-Lattice Systems. Physical Review Applied, 2019. 11(6): p.064029.
4. Xu, H., et al., Superpolynomial quantum enhancement in polaritonic neuromorphic computing. Physical Review B, 2021. 103(19): p.195302.
5. Su, R., et al., Observation of exciton polariton condensation in a perovskite lattice at room temperature. Nature Physics, 2020. 16(3):p. 301-306.
6. Pieczarka, M., et al., Topological phase transition in an all-optical exciton-polariton lattice. Optica, 2021. 8(8): p. 1084-1091.
7. Wu, J., et al., Higher-order topological polariton corner state lasing. Science Advances, 2023. 9(21): p. eadg4322.
8. Shi, Y., et al., Coherent Optical Spin Hall Transport for Spin-optronics at Room Temperature. arXiv preprint arXiv:2304.12854, 2023.
9. Ghosh, S. and T.C.H. Liew, Quantum computing with exciton-polariton condensates. npj Quantum Information, 2020. 6(1): p. 16.
10. Ghosh, S., T. Paterek, and T.C. Liew, Quantum neuromorphic platform for quantum state preparation. Physical review letters,2019.123(26):p.260404.
欢迎全校师生参加!
理学院
2024年3月15日