师资团队
教授名单
其他骨干教师
行政—教辅—博士后



曲航 [ 副教授 ] 物理系 管理个人简历


性别:

出生日期:1983-07

职务:

学术兼职:常年担任Optics Letters, Optics Express, Journal of Sensors等光学、传感器领域杂志的审稿人

社会兼职:

电话:

手机:

传真:

E-mail:haqux@stu.edu.cn

学历简介:
Ph.D. 2009-5 至 2013-12 Polytechnique de Montreal, Engineering Physics
硕士 2005-9 至 2007-7 吉林大学,光学工程
本科 2001-9 至 2005-7 吉林大学,光学

工作经历:
2018年3月 至 现在 汕头大学 副教授
2016-1 至 2018-3 Polytechnique de Montreal, Research Associate
2014-1 至 2015-12 Polytechnique de Montreal, Post-doc fellow

担任课程:
普通物理学
光学系统设计(研究生)
大学物理实验
光学专业实验

主要研究兴趣:
微纳结构波导研发及应用,光纤生物化学传感,新型多材料多功能纤维,电子皮肤,光子晶体研发及应用

承担项目:
[ 1 ] 省部级面上项目 农作物生长环境的温湿度光纤传感器(参与);
[ 2 ] 省部级面上项目 基于毛细管光纤的小型便携式水质多参数检测系统(主持);
[ 3 ] 汕头大学校级项目 基于空芯布拉格光纤的化学生物传感器的研究 (主持);(编号:NT18016),

研究成果:
[ 1 ] J. Li*, H. Qu, J. Wang, "Photonic Bragg waveguide platform for multichannel resonant sensing applications in the THz range", Biomedical Optics Express, Vol. 11(5), 2476-2489 (2020));
[ 2 ] H. Chen, X.Hu, M. He, R. Ren, C. Zhang, and H. Qu*, Ultrasensitive Gas Refractometer Using Capillary-Based Mach–Zehnder Interferometer, Sensors, Vol. 20, pp.1191 (2020);
[ 3 ] H. Qu, X. Lu and M. Skorobogatiy, "All-Solid Flexible Fiber-Shaped Lithium Ion Batteries,” XXVIII International Materials Research Congress, D7, Materials and Technologies for Energy Conversion Saving and Storage (MATECSS), Mexico, (2019);
[ 4 ] H. Qu, X. Lu, and M. Skorobogatiy, “All solid flexible fiber-shaped lithium ion batteries,” Journal of the Electrochemical Society, Vol. 165(3), pp. A688-A695, (2018);
[ 5 ] H. Qu, X. Lu, M. Skorobogatiy, "Piezoelectric Micro- And Nano- Structured Fibers Fabricated via Fiber Drawing Technique," IEEE International Flexible Electronics Technology Conference, Session 6: Flexible energy harvesters and storages, Canada (2018);
[ 6 ] X. Lu, H. Qu, M. Skorobogatiy, "All-solid Flexible Fiber-Shaped Lithium Ion Batteries," IEEE International Flexible Electronics Technology Conference, Session 6: Flexible energy harvesters and storages, Canada (2018);
[ 7 ] X. Lu, H. Qu, and M. Skorobogatiy, "Piezoelectric Micro- and Nanostructured Fibers Fabricated from Thermoplastic Nanocomposites Using a Fiber Drawing Technique: Comparative Study and Potential Applications," M02 Wearable Sensors and Systems, Advanced Solid State and Electrochemical Science and Technology (AiMES) Meeting, Mexico (2018);
[ 8 ] H. Qu, X. Lu, M. Skorobogatiy, "Solid Electrolyte, Flexible Li-ion Fiber Batteries for Compliant Energy Storage and Wearable Applications," A01 Battery and Energy Technology, (AiMES) Meeting, Mexico (2018);
[ 9 ] X. Lu, H. Qu, M. Skorobogatiy, "Novel materials and fabrication techniques for wearable energy generation and storage devices - from piezoelectric fibers to li-ion threads," Energy Materials Nanotechnology Americas Meeting, (2017);
[ 10 ] T. Ma, K Nallapan, H. Guerboukha, M. Skorobogatiy and H. Qu, "Dispersion Compensation in Terahertz Communication Links Using Metallized 3D Printed Hollow Core Waveguide Bragg Gratings," Coneference on Lasers and Elctro-optics, SM3J.4, (2017);
[ 11 ] H. Qu, and M. Skorobogatiy, "Sideband generation in moving photonic crystals," 6.06, Photonic North, Canada, (2017);
[ 12 ] X. Lu, H. Qu, and M. Skorobogatiy, "Piezoelectric microstructured fibers via drawing of multimaterial preforms," Nature Scientific Reports, Vol. 7, pp. 2907 (2017);
[ 13 ] X. Lu, H. Qu, and M. Skorobogatiy, "Piezoelectric micro- and nanostructured fibers fabricated from thermoplastic nanocomposites using a fiber drawing technique: comparative study and potential applications," ACS Nano, Vol. 11, pp. 2103 (2017);
[ 14 ] H. Qu, J. Hou, Y. Tang, O. Semenikihin, and M. Skorobogatiy, "Thin flexible lithium ion battery featuring graphite paper based current collectors with enhanced conductivity," Canadian Journal of Chemistry, Vol. 95, pp. 169-173 (2017);
[ 15 ] J. Li, H. Qu, and M. Skorobogatiy, "Squeezed hollow-core photonic Bragg fiber for surface sensing applications," Optics Express, Vol. 24, pp. 15687-15701 (2016);
[ 16 ] H. Qu, Z.-L. Deck-Léger, C. Caloz, and M. Skorobogatiy, "Frequency generation in moving photonic crystals," Journal of American Optical Society B, Vol. 33, p. 1616 (2016);
[ 17 ] A. K. Yetisen, H. Qu, A. Manbachi, H. Butt, M.R. Dokmeci, J.P. Hinestroza, M. Skorobogatiy, and S. H. Yun, “Nanotechnology in textiles” ACS Nano, Vol.10, pp. 3042-3068 (2016);
[ 18 ] H. Qu, Hichem Guerboukha, Maksim Skorobogatiy, "Linear rotary optical delay lines," SPIE Photonics West, 9754-11, USA (2016).;
[ 19 ] H. Qu, Hichem Guerboukha, Maksim A. Skorobogatiy, "Dynamic measurements at THz frequencies with a fast rotary delay line," SPIE Photonics West, 9747-27, USA (2016);
[ 20 ] H. Qu, Zoé-Lise Deck-Léger, Christophe Caloz, Maksim Skorobogatiy, "Frequency Generation in a Moving 2-Dimensional Photonic Crystal," SPIE Photonics North, 25.40, Canada (2016);
[ 21 ] Markov Andrey, Hang Qu, Skorobogatiy Maksim, Guerboukha Hichem, "Contactless Real-time Dynamic Measurements with THz waves and a Rotary Delay Line," Canadian Association of Physicists Congress, 1150024, Canada (2016);
[ 22 ] Markov Andrey, Skorobogatiy Maksim, Hang Qu, Guerboukha Hichem, "Dynamic measurements at THz frequencies with a fast rotary optical delay line," Canadian Association of Physicists Congress, 1150026, Canada (2016);
[ 23 ] Featured Article: H. Qu, O. Semenikhin, M. Skorobogatiy, “Flexible fiber batteries for applications in smart textiles,” Smart Materials and Structures, Vol. 24, pp. 025012 (2015);
[ 24 ] H. Guerboukha, A. Markov, H. Qu, M. Skorobogatiy, “Fast rotary linear optical delay line for THz, time-domain spectroscopy,” IEEE Transactions on Terahertz Science and Technology, Vol. 5, pp. 564-472 (2015);
[ 25 ] J. Li, H. Qu, M. Skorobogatiy, “Simultaneous monitoring of the real and imaginary parts of the analyte refractive index using liquid-core photonic bandgap Bragg fibers,” Optics Express, vol. 23, pp. 22963-22976 (2015);
[ 26 ] Book Chapter: H. Qu, J. Li. M. Skorobogatiy, “Photonic bandgap fibers – a roadway to all-fiber refractometer systems for monitoring liquid analytes,” in Optofluidics, sensors and actuators in microstructured optical fibers edited by S. Pissadakis and S. Selleri, Woodhead Publishing (2015);
[ 27 ] Book Chapter: H. Qu, M. Skorobogatiy, “Conductive polymer yarns for electronic textiles,” in Electronic textile: Smart fabrics and wearable technology” edited by Prof. T. Dias and Prof. S. Lynch, Woodhead Publishing (2015);
[ 28 ] H. Guerboukha, A. Markov, H. Qu, M. Skorobogatiy, “Fast rotary linear optical delay line for THz time-domain spectroscopy,” 40th Int. Conf. on Infrared, Millimeter, and THz Waves, FS-57, China (2015);
[ 29 ] H. Guerboukha, A. Markov, H. Qu and M. Skorobogatiy, “Dynamic measurements at terahertz frequencies with a fast rotary delay line,” SPIE Photonics North, June (2015);
[ 30 ] H. Qu, M. Skorobogatiy, "Design of the Curvilinear Reflectors for Linear Rotary Optical Delay Lines," International Optical Design Conference (IODC), IM2B.4, USA (2014);
[ 31 ] H. Qu, M. Skorobogatiy, "An all-fiber spectrometer using deconvolution of intensity images at the output of photonic bandgap fiber bundle," Computational Optical Sensing and Imaging (COSI), CTu2C.3, USA (2014);
[ 32 ] H. Qu, G. F. Yan, M. Skorobogatiy, “Interferometric fiber-optic bending/nano-displacement sensor using plastic dual-core fiber,” Optics Letters, Vol. 39, pp. 4835-4838 (2014);
[ 33 ] H. Qu, T. Brastaviceanu, F. Bergeron, J. Olesik, I. Pavlov, T. Ishigure, M. Skorobogatiy, “Photonic bandgap Bragg fiber sensors for bending/displacement detection,” Applied Optics, Vol. 52, pp. 6344-6348 (2013);
[ 34 ] H. Qu, M. Skorobogatiy, “Micro-Displacement Sensors Based on Plastic Photonic Bandgap Bragg Fibers,” Frontiers in Optics (FiO), FTh4B.4, Orlando, Florida, USA, October, (2013);
[ 35 ] H. Qu, T. Brastaviceanu, F. Bergeron, J. Olesik, M. Skorobogatiy, “Micro-Displacement Sensors Based on Plastic Photonic Bandgap Bragg Fibers,” OSA Optical Sensors, SM2D.5, Rio Grande, Puerto Rico, July, (2013);
[ 36 ] A. Markov, S. Gorgutsa, H. Qu, M. Skorobogatiy, “Plasmonic Two Wire Terahertz Fibers with Highly Porous Dielectric Support,” Conference on lasers and Electro Optics (Coneference on Lasers and Elctro-optics2013), CTh1K.4, San Jose, USA, June, (2013);
[ 37 ] Invited talk: H. Qu, Jean-Pierre Bourgeois, Julien Rolland, Alexandru Vlad, Jean-Fran?ois Gohy and Maksim Skorobogatiy, "Flexible fiber batteries for applications in smart textiles," MRS Online Proceedings Library, 1489, mrsf12-1489-a04-01 doi:10.1557/opl.2013.913, (2013);
[ 38 ] H. Qu, Maksim Skorobogatiy, "Liquid-core low-refractive index-contrast Bragg fiber sensor," (BIO-SENS-6-20-3), Photonics North, Canada, (2012);
[ 39 ] H. Qu, Maksim Skorobogatiy, "All-photonic-bandgap-fiber sensor for detection of liquid refractive index," (BIO-SENS-8-50-5), Photonics North, Canada, (2012);
[ 40 ] A. Markov, S. Gorgutsa, H. Qu and M. Skorobogatiy, "THz wire waveguides," Plasmonics, Gordon Research Conference, Maine, USA, June, (2012);
[ 41 ] H. Qu, B. Ung, M. Skorobogatiy, "Photonic bandgap fiber bundle spectrometer," CM4B.4, Coneference on Lasers and Elctro-optics, San Jose, CA, USA, (2012);
[ 42 ] H. Qu, M. Skorobogatiy, “Resonant bio- and chemical sensors using low-refractive-index- contrast liquid-core Bragg fibers,” Sensors and Actuators B, Vol. 161, pp. 261-268 (2012);
[ 43 ] H. Qu, B. Ung, M. Roze, M. Skorobogatiy, “All photonic bandgap fiber spectroscopic system for detection of refractive index changes in aqueous analytes,” Sensors and Actuators B, Vol. 161, pp. 235-243 (2012);
[ 44 ] H. Qu, M. Skorobogatiy, “Liquid-core low-refractive-index-contrast Bragg fiber sensor,” Applied Physics Letters, Vol. 98, pp. 201114 (2011);
[ 45 ] Invited talk: H. Qu, M. Skorobogatiy, “All-polymer Photonic Bandgap Bragg Fibers for Bio-chemical Sensors and Spectrometers”, K-1 17th Microoptics Conference (MOC’11), Sendai, Japan, (2011);
[ 46 ] H. Qu, B. Ung, and M. Skorobogatiy, "Liquid filled hollow core photonic bandgap fiber sensor," in Optical Sensors, OSA Technical Digest (CD) (Optical Society of America, 2011), paper SWB6 (2010);
[ 47 ] H. Qu, B. Ung, I. Syed, N. Guo, M. Skorobogatiy, “Photonic bandgap fiber bundle spectrometer,” Applied Optics, Vol. 49, pp. 4791 (2010);