师资团队
教授
其他骨干教师
行政—教辅
物理系
生物系
海洋科学研究所

A person wearing glassesDescription automatically generated with medium confidence

个人信息

曲航 副教授

汕头大学理学院物理系

Email: haqux@stu.edu.cn

 

简要介绍:

主持国家自然科学基金面上项目、广东省自然科学基金项目、广东省科技计划项目等各级项目10余项。在ACS Nano, Sens. Actuators. B, Appl. Phys. Lett., J. Lightwave Technol., Opt. Express, Opt. Lett.等国际期刊上发表SCI论文50余篇,论文被引用2000余次, H-index>20。申请并已获得授权中国发明专利5项、国际发明专利1项。课题组依托广东省半导体材料与器件研究中心,具有先进的研究设施(主要包括超净室2间、飞秒激光微纳加工系统,紫外激光掩膜刻珊系统,磁控溅射系统、椭圆偏振光谱仪、拉曼光谱仪、荧光光谱仪、各类光纤器件表征加工设备),与境内外高校(如比利时蒙斯大学、丹麦理工大学、香港理工大学、北京师范大学)及企业有着广泛的合作关系,毕业生适合继续读博深造或在光纤器件与通信、光学微纳加工、光学设计领域从事相关研发工作。课题组的毕业研究生大多选择了国内知名光电领域企业就业或顶尖高校深造

 

主要研究兴趣:

光纤传感,微纳结构集成波导,新型多材料多功能纤维,智能穿戴设备,光子晶体

 

教育经历:

博士 2009/052013/12University of Montreal

硕士 2005/092007/07,吉林大学

学士 2001/092005/07,吉林大学

 

工作经历:

2018/03至现在,汕头大学,副教授

2016/012018/02University of MontrealResearch Associate

2014/012015/12University of MontrealPost-doc fellow

2007/092008/09,大族激光,光学工程师

 

承担课程:

普通物理学,光学系统设计,光纤传感技术

 

部分研究成果:

1.         Y. Liu, R. Zheng, S. Peng, Z. Xin, G. Xu, H. Wei, C. Caucheteur, X. Hu, and H. Qu*, Highly sensitive fiber-optic Fabry-Perot microforce probe, Journal of Lightwave Technology, Early Access, DOI: 10.1109/JLT.2024.3451472, (2004)

2.         X. Hu, Y. Liu, H. Wei, C. Teng, Q. Yu, Z. Luo, Z. Lian, H. Qu*, and C. Caucheteur, Tilted Bragg grating in a glycerol-infiltrated specialty optical fiber for temperature and strain measurements, Optics Letters, 49(11), 2869-2872, (2024)

3.         H. Fu, S. Peng, P. Li, C. Teng, C. Caucheteur, H. Qu*, and X. Hu*, Highly sensitive fiber force sensor based on cascaded Fabry-Perot cavities and Vernier effect, Optics and Laser Technology, 175, 2024, 110825, (2024)

4.         X. Hu, H. Fu, P. Li, C. Marques, C. Teng, H. Qu*, and C. Caucheteur, Easy-to-Fabricate UV-Glue-Based Cascaded Fabry–Perot Fiber Sensor Probe for Temperature Measurement. Photonics, 11 (2), p. 111. (2024). 

5.         X. Hu, N. Xu, X. Cheng, L. Tan, R. Min, H. Qu*, C. Caucheteur, Recovery of a highly reflective Bragg grating in DPDS-doped polymer optical fiber by thermal annealing. Optics Letters, 48(10), 2547-2550. (2023).

6.         H. Qu, L. Tan, F-C. WU, W. Huang, K. Li, X. Chen, Y.-W. Xu and X. Hu, NY-ESO-1 antigen-antibody interaction process based on an TFBG plasmonic sensor, Biomedical Optics Express 14 (11), 5921-5931, (2023).

7.         H. Qu, W. Huang, Z. Lin, X. Cheng, R. Min, C. Teng, C. Caucheteur, X. Hu*, Influence of Annealing on Polymer Optical Fiber Bragg Grating Inscription, Stability and Sensing: A Review. Sensors, 23(17), 7578, (2023)

8.         H. Qu, Z Chen, S. Gao, R. Min, G. Woyessa, O. Bang, C. Caucheteur, and X. Hu*, Femtosecond laser line-by-line tilted Bragg grating inscription in single-mode step-index TOPAS/ZEONEX polymer optical fiber. Optics Letters, 48(6), 1438-1441, (2023).

9.         R. He, L. Shen, Z. Wang, G. Wang, H. Qu, X. Hu, R. Min, Optical fiber sensors for heart rate monitoring: A review of mechanisms and applications. Results in Optics, 100386, (2023).

10.      Y. Zhang, S. Ma, J. Jiang, H Qu*, X. Hu, Ultrasensitive fiber refractometer based on C-shaped fiber and Vernier effect, European Workshop on Optical Fibre Sensors (EWOFS 2023) 12643, 205-208, (2023)

11.      W. Liang, X. Cheng, H. Qu, C. Caucheteur, X. Hu, Bragg grating inscription in BDK-doped PMMA optical fiber using 266 nm pulsed laser, European Workshop on Optical Fibre Sensors (EWOFS 2023) 12643, 417-420, (2023).

12.      J. Li, Z. Chen, X. Cheng, H. Qu, C Caucheteur, X Hu, Bragg grating inscription in BDK-doped PMMA optical fiber using femtosecond laser point-by-point technique, European Workshop on Optical Fibre Sensors (EWOFS 2023) 12643, 413-416, (2023).

13.      S Ma, Y. Zhang, H. Qiu, C. Zhao, X. Hu, H. Qu*, Fiber optic Mach-Zehnder temperature sensor based on dual-core fiber, European Workshop on Optical Fibre Sensors (EWOFS 2023) 12643, 69-72, (2023).

14.      S. Gao, H. Wang, Y. Chen, H. Wei, G. Woyessa, O. Bang, R. Min, H. Qu, C. Caucheteur, X. Hu*,  Point-by-Point Induced High Birefringence Polymer Optical Fiber Bragg Grating for Strain Measurement. Photonics, Vol. 10, No. 1, p. 91, (2023).

15.      X. Wen, Y. Liu, Q. Liu, Z. Chen, X. Hu, C. Xu, H. Chen, M. Xing, H. Qu*, and M. Zhang*, Glucose sensing based on hydrogel grating incorporating phenylboronic acid groups. Optics Express, 30(26), 47541-47552. (2022).

16.      H. Qiu, J. Jiang, L. Yao, Z. Dai, Z. Liu, H. Qu*, and X. Hu, Ultrasensitive cascaded in-line Fabry-Perot refractometers based on a C-shaped fiber and the Vernier effect. Optics Express, 30(15), 27704-27714. (2022).

17.      X. Chen*, W. Lin, P. Xu, L. Chen, W. Heng, X. Hu, H. Qu, J. Sun, Y. Cui, fM-level detection of glucose using a grating based sensor enhanced with graphene oxide. Journal of Lightwave Technology, (2022).

18.      W. Lin, W. Huang, Y. Liu, X. Chen, H. Qu, X. Hu*, Cladding mode fitting-assisted automatic refractive index demodulation optical fiber sensor probe based on tilted fiber bragg grating and SPR. Sensors, 22(8), 3032. (2022).

19.      X. Chen*, P. Xu, W. Lin, J. Jiang, H. Qu, X. Hu, J. Sun, Y. Cui, Label-free detection of breast cancer cells using a functionalized tilted fiber grating. Biomedical Optics Express, 13(4), 2117-2129. (2022).

20.      X. Hu*, Y. Chen, S. Gao, R. Min, G. Woyessa, O. Bang, H. Qu, H. Wang, C. Caucheteur, Direct Bragg grating inscription in single mode step-index TOPAS/ZEONEX polymer optical fiber using 520 nm femtosecond pulses. Polymers, 14(7), 1350, (2022).

21.      X. Hu*, Z. Chen, X. Cheng, R. Min., H. Qu, C. Caucheteur, H. Y. Tan, Femtosecond laser point-by-point Bragg grating inscription in BDK-doped step-index PMMA optical fibers. Optics Letters, 47(2), 249-252. (2022).

22.      J. Jiang, N. Zhang, R. Min, X. Cheng, H. Qu, X. Hu*, Recent achievements on grating fabrications in polymer optical fibers with photosensitive dopants: a review. Polymers, 14(2), 273, (2022).

23.      X. Hu, Y. Liu, J. Jiang, W. lin, H. Qu, C. Caucheteur, Tilted Fiber Bragg Grating Inscription in Boron Co-Doped Photosensitive Optical Fiber Using 266 nm Solid State Laser Pulses. IEEE Sensors Journal, 22(3), 2229-2236, (2021).

24.      H. Wang, S. Gao, X. Yue, X. Cheng, Q. Liu, R. Min, H. Qu, X. Hu*, Humidity-sensitive PMMA fiber Bragg grating sensor probe for soil temperature and moisture measurement based on its intrinsic water affinity. Sensors, 21(21), 6946, (2021).

25.      Hu, X., Yue, X., Cheng, X., Gao, S., Min, R., Wang, H., Qu H., and Tam, H. Y. Large refractive index modulation based on a BDK-doped step-index PMMA optical fiber for highly reflective Bragg grating inscription. Optics Letters, 46(12), 2864-2867, (2021).

26.      Qiu, H., Zhao, C., Hu, X.*, Chen, H., Yu, Q., Lian, Z., and Qu, H. Glycerol–Water Solution-Assisted Mach–Zehnder Temperature Sensor in Specialty Fiber with Two Cores and One Channel. Photonics, Vol. 8, No. 4, p. 103, (2021).

27.      Chen, H., Hu, X., Chen, X., Yu, Q., Lian, Z., Wang, H., Qu, H.*, In-Line Interferometric Temperature Sensor Based on Dual-Core Fiber. IEEE Sensors Journal, Vol. 21, No. 10, pp. 12146-12152, (2021).

28.      Zhao, C., Qiu, H., Chen, H., Hu, X., Yu, Q., Lian, Z. Qu, H.*, In-fiber Mach-Zehnder temperature sensor using silicone-oil-filled dual core fiber. Sensors and Actuators A: Physical, Vol. 323, pp.112644, (2021)

29.      Chen, H., Hu*, X., He, M., Yu, Q., Lian, Z., Yang, Z., and Qu, H., Dual-Core Fiber-Based Interferometer for Detection of Gas Refractive Index. Photonics, Vol. 7, No. 4, p. 111, (2020).

30.      Yue, X., Chen, H., Qu, H., Min, R., Woyessa, G., Bang, O., and Hu, X*. Polycarbonate mPOF-Based Mach–Zehnder Interferometer for Temperature and Strain Measurement. Sensors, 20(22), 6643, (2020).

31.      Li, J., Qu, H., and Wang, J. Photonic Bragg waveguide platform for multichannel resonant sensing applications in the THz range. Biomedical Optics Express, 11(5), 2476-2489, (2020)

32.      H. Chen, X. Hu, M. He, P. Ren, Z. Chao, and H. Qu*, “Ultrasensitive gas refractometer using capillary-based Mach-Zehnder interferometer” Sensors, Vol. 20, pp. 1191 (2020)

33.      H. Qu, X. Lu, and M. Skorobogatiy*, “All solid flexible fiber-shaped lithium ion batteries,” Journal of the Electrochemical Society, Vol. 165(3), pp. A688-A695 (2018)

34.      Featured ArticleH. Qu and M. Skorobogatiy*, (Ed. S.V. Boriskina), "Optics on the Go: Active-Color-Changing Textiles," Optics Photonics News, September Issue, pp. 36-41 (2017) 

35.      X. Lu, H. Qu, and M. Skorobogatiy*, "Piezoelectric Microstructured Fibers via Drawing of Multimaterial Preforms," Nature Scientific Reports, Vol. 7, pp. 2907 (2017)

36.      X. Lu, H. Qu, and M. Skorobogatiy*, "Piezoelectric Micro- and Nanostructured Fibers Fabricated from Thermoplastic Nanocomposites Using a Fiber Drawing Technique: Comparative Study and Potential Applications," ACS Nano, Vol. 11, pp. 2103 (2017)

37.      H. Qu*, J. Hou, Y. Tang, O. Semenikihin, and M. Skorobogatiy, "Thin Flexible Lithium Ion Battery Featuring Graphite Paper Based Current Collectors with Enhanced Conductivity," Canadian Journal of Chemistry, Vol. 95, pp. 169-173 (2017)

38.      J. Li, H. Qu, and M. Skorobogatiy*, "Squeezed hollow-core photonic Bragg fiber for surface sensing applications," Optics Express, Vol. 24, pp. 15687-15701 (2016) 

39.      H. Qu, Z.-L. Deck-Léger, C. Caloz, and M. Skorobogatiy*, "Frequency generation in moving photonic crystals," Journal of American Optical Society B, Vol. 33, p. 1616 (2016)

40.      A. K. Yetisen, H. Qu, A. Manbachi, H. Butt, M.R. Dokmeci, J.P. Hinestroza, M. Skorobogatiy, S.H.Yun*, “Nanotechnology in textiles” ACS Nano, Vol.10, pp. 3042-3068 (2016)

41.      Featured Article: H. Qu, O. Semenikhin, M. Skorobogatiy*, “Flexible fiber batteries for applications in smart textiles,” Smart Materials and Structures, Vol. 24, pp. 025012 (2015)

42.      H. Guerboukha, A. Markov, H. Qu, M. Skorobogatiy*, “Fast rotary linear optical delay line for THz, time-domain spectroscopy,” IEEE Transactions on Terahertz Science and Technology, Vol. 5, pp. 564-472 (2015)

43.      J. Li, H. Qu, M. Skorobogatiy*, “Simultaneous monitoring of the real and imaginary parts of the analyte refractive index using liquid-core photonic bandgap Bragg fibers,” Optics Express, vol. 23, pp. 22963-22976 (2015) 

44.      H. Qu, G. F. Yan, M. Skorobogatiy*, “Interferometric fiber-optic bending/nano-displacement sensor using plastic dual-core fiber,” Optics Letters, Vol. 39, pp. 4835-4838 (2014)

45.      Book Chapter: H. Qu, M. Skorobogatiy*, “Conductive polymer yarns for electronic textiles,” in Electronic textile: Smart fabrics and wearable technology edited by Prof. T. Dias and Prof. S. Lynch, Woodhead Publishing (2015)

46.      Book Chapter: H. Qu, J. Li. M. Skorobogatiy*, “Photonic bandgap fibers – a roadway to all-fiber refractometer systems for monitoring liquid analytes,” in Optofluidics, sensors and actuators in microstructured optical fibers edited by S. Pissadakis and S. Selleri, Woodhead Publishing (2015)

47.      H. Qu, T. Brastaviceanu, F. Bergeron, J. Olesik, I. Pavlov, T. Ishigure, M. Skorobogatiy*, “Photonic bandgap Bragg fiber sensors for bending/displacement detection,” Applied Optics, Vol. 52, pp. 6344-6348 (2013)

48.      H. Qu, M. Skorobogatiy*, “Resonant bio- and chemical sensors using low-refractive-index- contrast liquid-core Bragg fibers,” Sensors and Actuators B, Vol. 161, pp. 261-268 (2012)

49.      H. Qu, B. Ung, M. Roze, M. Skorobogatiy*, “All photonic bandgap fiber spectroscopic system for detection of refractive index changes in aqueous analytes,” Sensors and Actuators B, Vol. 161, pp. 235-243 (2012)

50.      H. Qu, M. Skorobogatiy*, “Liquid-core low-refractive-index-contrast Bragg fiber sensor,” Applied Physics Letters, Vol. 98, pp. 201114 (2011)

51.      H. Qu, B. Ung, I. Syed, N. Guo, M. Skorobogatiy*, “Photonic bandgap fiber bundle spectrometer,” Applied Optics, Vol. 49, pp. 4791 (2010)