[ 1 ] W. Ma;Polarization rotation associated critical phenomena in epitaxial PbTiO3 thin films near room temperature;AIP Advances 6, 045310 (2016). View online: http://dx.doi.org/10.1063/1.4947194; |
[ 2 ] A. Hao, W. Ma;Electric field-induced polarization rotation and dielectric tunability of strained PbTiO3 epitaxial thin films;Ferroelectrics 494, 94-109 (2016). View online: http://dx.doi.org/10.1080/00150193.2016.1136457; |
[ 3 ] W. Ma, A. Hao;Polarization rotation and piezoelectricity of electric field-induced monoclinic and triclinic structures in strained PbTiO3;Journal of Applied Physics 116, 214110 (2014). View online: http://dx.doi.org/10.1063/1.4903523; |
[ 4 ] W. Ma, A. Hao;Electric field-induced polarization rotation and ultrahigh piezoelectricity in PbTiO3;Journal of Applied Physics 115, 104105 (2014). View online: http://dx.doi.org/10.1063/1.4868320; |
[ 5 ] D. Zhu, W. Ma;Effect of mechanical stress on phase stability and polarization states in ferroelectric barium titanate and lead titanate;Ceramics International 40, 6647–6654 (2014). Published online Dec. 4, 2013. View online: http://dx.doi.org/10.1016/j.ceramint.2013.11.123; |
[ 6 ] W. Ma;Surface layer clamping as origin for size-dependent downshift of Curie temperature in PbTiO3 nanoparticles;Physica B 420, 28–31 (2013). View online: http://dx.doi.org/10.1016/j.physb.2013.03.038; |
[ 7 ] W. Ma;Size dependent transition enthalpy in PbTiO3 nanoparticles due to a cubic surface layer;Applied Physics A 111, 613–617 (2013). Published online Sept. 26, 2012. View online: http://dx.doi.org/10.1007/s00339-012-7274-y; |
[ 8 ] H. Song, W. Ma;Hydrothermal synthesis of submicron NaNbO3 powders;Ceramics International 37, 877–882 (2011). View online: http://dx.doi.org/10.1016/j.ceramint.2010.11.011; |
[ 9 ] G. Bai, W. Ma;Phenomenological analysis of phase transitions in epitaxial perovskite ferroelectric thin films;Physica B 405, 1901–1907 (2010). View online: http://dx.doi.org/10.1016/j.physb.2010.01.070; |
[ 10 ] W. Ma;Flexoelectric charge separation and size dependent piezoelectricity in dielectric solids.;Physica Status Solidi (b) 247, 213–218 (2010). Published online Nov. 11, 2009. View online: http://dx.doi.org/10.1002/pssb.200945394; |
[ 11 ] W. Ma;Surface tension and Curie temperature in ferroelectric nanowires and nanodots;Applied Physics A 96, 915–920 (2009). View online: http://dx.doi.org/10.1007/s00339-009-5246-7; |
[ 12 ] W. Ma;Flexoelectric effect in ferroelectrics;Functional Materials Letters 1, 235–238 (2008). View online: http://dx.doi.org/10.1142/S179360470800037X; |
[ 13 ] W. Ma;A study of flexoelectric coupling associated internal electric field and stress in thin film ferroelectrics;Physica Status Solidi (b) 245, 761-768 (2008). View online: http://dx.doi.org/10.1002/pssb.200743514; |
[ 14 ] W. Ma;Flexoelectricity: strain gradient effects in ferroelectrics;Physica Scripta T 129, 180-183 (2007). View online: http://dx.doi.org/10.1088/0031-8949/2007/T129/041; |
[ 15 ] W. Ma, L. E. Cross;Flexoelectricity of barium titanate;Applied Physics Letters 88, 232902 (2006). View online: http://dx.doi.org/10.1063/1.2211309; |
[ 16 ] W. Ma, L.E. Cross;Flexoelectric effect in ceramic lead zirconate titanate;Applied Physics Letters 86, 072905 (2005). View online: http://dx.doi.org/10.1063/1.1868078; |
[ 17 ] W. Ma, D. Hesse, U. Goesele;Nanostructure patterns of piezoelectric and ferroelectric complex oxides with various shapes obtained by natural lithography and pulsed laser deposition;Nanotechnology 17, 2536-2541 (2006). View online: http://dx.doi.org/10.1088/0957-4484/17/10/016; |
[ 18 ] W. Ma, D. Hesse, U. Goesele;Formation of ferroelectric perovskite nanostructure patterns using latex sphere monolayers as masks: An ambient gas pressure effect during pulsed laser deposition;Small 1, 837-841 (2005). View online: http://dx.doi.org/10.1002/smll.200500073; |
[ 19 ] W. Ma, L.E. Cross;Tunable electric-field-induced piezoelectricity in high strain relaxor ferroelectric P(VDF-TrFE) copolymer.;Journal of Physics: Condensed Matter 17, 1011-1018 (2005). View online: http://dx.doi.org/10.1088/0953-8984/17/6/019; |
[ 20 ] W. Ma, L.E. Cross;An experimental investigation of electromechanical response in a dielectric acrylic elastomer;Applied Physics A 78, 1201-1204 (2004). View online: http://dx.doi.org/10.1007/s00339-003-2197-2; |
[ 21 ] W. Ma, D. Hesse;Microstructure and piezoelectric properties of sub-80 nm high polycrystalline SrBi2Ta2O9 nanostructures within well-ordered arrays;Applied Physics Letters 85, 3214-3216 (2004). View online: http://dx.doi.org/10.1063/1.1804603; |
[ 22 ] W. Ma, D. Hesse;Polarization imprint in ordered arrays of epitaxial ferroelectric nanostructures;Applied Physics Letters 84, 2871-2873 (2004). View online: http://dx.doi.org/10.1063/1.1703835; |
[ 23 ] W. Ma, C. Harnagea, D. Hesse, U. Goesele;Well-ordered arrays of pyramid-shaped ferroelectric BaTiO3 nanostructures;Applied Physics Letters 83, 3770-3772 (2003). View online: http://dx.doi.org/10.1063/1.1625106; |
[ 24 ] W. Ma, L.E. Cross;Strain-gradient-induced electric polarization in lead zirconate titanate ceramics;Applied Physics Letters 82, 3293-3295 (2003). View online: http://dx.doi.org/10.1063/1.1570517; |
[ 25 ] W. Ma, L.E. Cross;Flexoelectric polarization of barium strontium titanate in the paraelectric state;Applied Physics Letters 81, 3440-3442 (2002). View online: http://dx.doi.org/10.1063/1.1518559; |
[ 26 ] W. Ma, L.E. Cross;Large flexoelectric polarization in ceramic lead magnesium niobate;Applied Physics Letters 79, 4420-4422 (2001). View online: http://dx.doi.org/10.1063/1.1426690; |
[ 27 ] W. Ma, L.E. Cross;Observation of the flexoelectric effect in relaxor Pb(Mg1/3Nb2/3)O3 ceramics;Applied Physics Letters 78, 2920-2921 (2001). View online: http://dx.doi.org/10.1063/1.1356444; |