师资团队
教授名单
其他骨干教师
行政—教辅—博士后


 


单丽


管理个人简历


性别:

出生日期:1983年2月

职务:

学术兼职:

社会兼职:

电话:0754-86503755

手机:

传真:

E-mail: lishan@stu.edu.cn

学历简介(可从大学本科写起):

2002-092006-07  辽宁大学 信息与计算科学专业 本科

2006-092012-07  西安交通大学 计算数学专业 硕博连读

2009-092010-09  University of Pittsburgh 数学专业 联合培养博士生

工作经历:

2012-092015-08  辽宁工程技术大学 理学院 讲师

2015-092021-01  辽宁工程技术大学 理学院 副教授

2018-092019-09  Missouri University of Science and Technology  数学系 访问学者

2021-02至今   汕头大学 理学院数学系 副教授

主要研究兴趣:

偏微分方程数值解;流体动力学方程组的有限元方法的构造与分析;耦合问题的高效算法的构造、算法分析与数值模拟。

承担项目:

2014-012014-12,国家自然科学基金天元基金,“非稳态Navier-Stokes/Darcy 耦合问题的解耦算法研究 (No.11326224)

2015-012017-12,国家自然科学基金青年基金,Stokes-Darcy 耦合问题的解耦和局部并行算法研究(No.11401284

2015-072017-06,辽宁省科技厅自然科学基金项目“耦合流体系统的高阶解耦算法研究(No. 2015020056

2016-012018-12,辽宁省教育厅高等学校杰出青年学者成长计划(LJQ2015043

2018-062020-06,    辽宁省科技厅自然科学基金项目“多孔介质裂缝渗流问题的模与解耦算法研究(No.20180551138

2020-092022-09,辽宁省教育厅经费项目“流-流耦合问题的高效有限元方法研究
No.LJ2020JCL009

研究成果

[1] 单丽*,张振, 任意多边形网格上扩散问题的一个新型有限体积格式,应用数学学报,43(6): 1042-1053, 2020

[2] W. Yan, Li Shan* and C. S. Dong, Second-order partitioned time stepping methods for a parabolic two domain problem, 工程数学学报(英文版), 37(6): 753-770, 2020

[3] Y. H. Zhang*, Li Shan and Y.R. Hou, Well posedness and finite element approximation for the convection model in superposed fluid and porous layers, SIAM J. Numer. Anal. 58(1): 541-564, 2020

[4] Y. H. Zhang, Li Shan* and Y. R. Hou, New approach to prove the stability of a decoupled algorithm for a fluid-fluid interaction problem, Journal of Computational and Applied Mathematics 371,2020

[5] Li Shan, J. Y. Hou*, W. J. Yan and J. Chen, Partitioned time stepping method for a dual-porosity-Stokes model, Journal of Scientific Computing, 79:389-413, 2019

[6] 单丽*,冯思佳,Burgers方程的最优同伦渐近方法研究,高等学校计算数学学报,41(1): 45-53, 2019

[7] Y. H. Zhang, Y. R. Hou* and Li. Shan, Error estimates of a decoupled algorithm for a fluid-fluid interaction problem, Journal of Computational and Applied Mathematics, 333:266-291, 2018

[8] Li Shan and Y.H. Zhang* Error estimates of the partitioned time stepping method for the evolutionary Stokes-Darcy flow, Computers and Mathematics with Applications73:713-726, 2017

[9] H.B. Zheng, J. P. Yu* and Li Shan, Unconditional error estimates for time dependent viscoelastic fluid flow, Applied Numerical Mathematics,119:1-17, 2017

[10] Y. H. Zhang, Y. R. Hou*, Li. Shan and X.J. Dong, Local and Parallel finite element algorithm for stationary incompressible Magnetohydrodynamics, Numerical Methods for Partial Differential Equations, 33:1513-1539, 2017

[11] Y. H. Zhang, Y. R. Hou* and Li. Shan, Stability and convergence analysis of a decoupled algorithm for a fluid-fluid interaction problem, SIAM J Numerical Analysis, 54(5): 2833-2867, 2016

[12] Y. H. Zhang, Y. R. Hou* and Li. Shan, Numerical analysis of the Crank-Nicolson extrapolation time discrete scheme for Magnetohydrodynamics flows, Numerical Methods for Partial Differential Equations, 31:2169-2208, 2015

[13] Li. Shan* and H. B. Zheng, Partitioned time stepping method for fully evolutionary Stokes-Darcy flow with Beavers-Joseph interface conditions, SIAM Journal on Numerical Analysis, 51( 2): 813-839, 2013

[14] Li. Shan*, W.J. Layton and H.B. Zheng, Numerical analysis of modular VMS methods with nonlinear eddy viscosity for the Navier-Stokes equations, International Journal of Numerical Analysis and Modeling, 10(4: 943-971, 2013

[15] Li. Shan, Y. R. Hou and H.B. Zheng*, Variational Multiscale method based on the Crank-Nicolson extrapolation scheme for the non-stationary Navier-Stokes equations, International Journal of Computer Mathematics, 89(16): 2198-2223, 2012

[16] Li. Shan*, H. B. Zheng and W. J. Layton, A decoupling method with different subdomain timesteps for non-stationary Stokes-Darcy model, Numerical Methods for Partial Differential Equations, 29(2): 549-583, 2013

[17] H. B. Zheng*, Li. Shan and Y. R. Hou, A quadratic equal-order stabilized method for Stokes problem based on two local Gauss integrations, Numerical Methods for Partial Differential Equations,26(5): 1180-1190, 2010

[18] Li. Shan* and Y. R. Hou, A fully discrete stabilized finite element method for the time-dependent Navier-Stokes equations, Applied Mathematics and Computation, 215(1): 85-99, 2009