
Email: haqux@stu.edu.cn
个人简介:
承担国家自然科学基金面上项目、广东省自然科学基金项目、广东省科技计划项目等各级项目10余项。在ACS Nano, Sens. actuators. B, Appl. Phys. Lett., J. Lightwave Technol., Opt. Express, Opt. Lett.等国际期刊上发表SCI论文>50篇,论文被引用>2100次, H-index=22。申请了中国发明专利9项(已获授权5项)。课题组依托“广东省半导体材料与器件研究中心”,具有先进的研究设施,主要包括超净室2间、飞秒激光微纳加工系统,紫外激光掩膜刻珊系统,磁控溅射系统、椭圆偏振光谱仪、拉曼光谱仪、荧光光谱仪、各类光纤表征加工设备等,与境内外高校(如比利时蒙斯大学、丹麦理工大学、香港理工大学,哈尔滨工业大学(深圳)、桂林电子科技大学、东莞理工大学,北京师范大学(珠海)等)及多家企业有着广泛的合作关系。组内毕业生多选择在国内顶尖高校读博深造或在光纤器件与通信、光学微纳加工、光学设计领域的光电类企业从事相关技术工作。
学习经历:
博士 2009/05至-2013/12,University of Montreal
硕士 2005/09至2007/07,吉林大学
学士 2001/09至2005/07,吉林大学
工作经历:
2018/03至现在,汕头大学,副教授
2016/01至2018/02,University of Montreal,Research Associate
2014/03至2015/12,University of Montreal,Post-doc fellow
2007/08至2008/08,比亚迪股份有限公司,光学研发工程师
担任课程:
普通物理学,光学系统设计,光纤传感技术,大学物理实验
主要研究兴趣:
新型光纤器件制备与传感,新型多材料多功能纤维,电子皮肤,光子晶体
承担项目:
1、 国家自然科学基金面上项目,基于超精细弹性微结构和游标效应的超灵敏光纤微纳力学传感器,主持,2015.01-2028.12
2、 广东省自然科学基金面上项目,D型光纤中倾斜光栅激发微环回音壁模式机理及其生物传感研究,主持,2022.01-2024.12
3、 广东省普通高校重点领域专项项目,基于悬挂双芯光纤结构的液体折射率和免标记生物传感研究,主持,2021.01-2023.12
4、 广东省科技专项资金(大专项+任务清单)项目,基于毛细管光纤的小型便携式水质多参数检测系统,主持,2020.01-2021.12
5、 华为科技股份有限公司(横向项目),飞秒激光在光纤内光栅直写,主持,2022.11-2022.12
6、 汕头大学科研启动项目,基于空芯布拉格光纤的化学生物传感器的研究,主持,2018.09-2021.08
7、 广东省普通高校重点领域专项项目,超快激光场下原子分子及其电子的量子态调控研究,参与,2024.01-2027.12
8、 广东高校省级重点平台项目,半导体材料与器件研究中心,参与,2022.01-2025.12
9、 广东省普通高校重点领域专项项目,柔性聚合物光纤传感器在食管癌早期诊断中的应用,参与,2021.01-2023.12
10、 李家诚基金会交叉研究项目,基于光衍射技术的隐形眼镜监控泪液中糖浓度,参与,2020.01-2022.12
11、 李家诚基金会交叉研究项目,新型生物材料结合蛋白类分子标志物研究,参与,2020.01-2022.12
发表期刊论文:
1. H. Qu, S. Ma, C. Marques, C. Caucheteur, and X. Hu*, TFBGs in polyimide-coated optical fibers for multi-parameter measurements, Optics Express, 33 (14), 29322-29336, (2025)
2. H. Qu, J. Li, G. Woyessa, O. Bang, P-C. Li*, and X. Hu*, Cladding Modes Generation Through Highly Localized Bragg Grating in Polymer Optical Fiber, IEEE Photonics Technology Letters, 37(6), 341, (2025)
3. T. Zhu, X. Zhong, X. Guo, Q. Huang, X. Chen, C. Teng, P-C. Li, X. Hu*, and H. Qu*, Cascaded MZI and FPI Sensor for Simultaneous Measurement of Air Pressure and Temperature Using Capillary Fiber and Dual-Core Fiber, Photonics, 12 (11), 1047, (2025)
4. X. Wu. W. Lin, B. Li, X. Zuo, Q. Pan, Z. Wu, H. Qu, X. Chen*, and J. Sun, Glucose detection using a tilted fiber Bragg grating coated with a GO-PBA composite layer, Biomedical Optics Express, 16, 3471-3485, (2025)
5. H. Qiu, Q. Huang, Y. Zhang, S. Bao, A. Zhang, R. Chen, Y. Xue, Y. Qiao, S. Zhou, P. Li, Y. Lv, Y. Yao, H. Qu*, Y. Dong*, and J. Tian*, "Fiber-tip magnetically driven microgripper for micromanipulation," Journal of Lightwave Technology, 43, 9488-9495, (2025)
6. Y. Liu, R. Zheng, S. Peng, Z. Xin, G. Xu, H. Wei, C. Caucheteur, X. Hu*, and H. Qu*, Highly sensitive fiber-optic Fabry-Perot microforce probe, Journal of Lightwave Technology, 43, 383-389, (2025).
7. X. Zhu, K. Li, H. Qu*, and X. Hu*, Advancements in fiber optic tactile sensors: A comprehensive review on principles, fabrication, and applications, Optics and Lasers in Engineering, 186, 108777, (2025).
8. H. Qu, W. Liang, X. Cheng, H.-Y. Tam, R. Min, P-C. Li*, and X. Hu*, Embedded POFBG for Respiratory and Heart Rate Measurement. IEEE Sensors Journal, 25, 4612-4619, (2025)
9. X. Zhu, Z. Xin, H. Zhu, H. Wang, X. Cheng, H. Tam, H. Qu*, and X. Hu*, Inscription and thermal stability of fiber Bragg gratings in hydrogen-loaded optical fibers using a 266 nm pulsed laser, Photonics, 11, 1092, (2024).
10. R. Chen, L. Li, Q. Yu, Z. Luo, Z. Lian, C. Teng, H. Qu*, and X. Hu*, Large Range Curvature Measurement Using FBGs in Two-Core Fiber with Protective Coating, Micromachines, 15, 1310, (2024).
11. X. Hu, Y. Liu, H. Wei, C. Teng, Q. Yu, Z. Luo, Z. Lian, H. Qu*, and C. Caucheteur, Tilted Bragg grating in a glycerol-infiltrated specialty optical fiber for temperature and strain measurements, Optics Letters, 49(11), 2869-2872, (2024).
12. H. Fu, S. Peng, P. Li, C. Teng, C. Caucheteur, H. Qu*, and X. Hu*, Highly sensitive fiber force sensor based on cascaded Fabry-Perot cavities and Vernier effect, Optics and Laser Technology, 175, 110825, (2024).
13. X. Hu, H. Fu, P. Li, C. Marques, C. Teng, H. Qu*, and C. Caucheteur, Easy-to-Fabricate UV-Glue-Based Cascaded Fabry–Perot Fiber Sensor Probe for Temperature Measurement, Photonics, 11(2), p. 111, (2024).
14. X. Hu, N. Xu, X. Cheng, L. Tan, R. Min, H. Qu*, and C. Caucheteur, Recovery of a highly reflective Bragg grating in DPDS-doped polymer optical fiber by thermal annealing, Optics Letters, 48(10), 2547-2550, (2023).
15. H. Qu, L. Tan, F.-C. Wu, W. Huang, K. Li, X. Chen*, Y-W. Xu, and X. Hu, NY-ESO-1 antigen-antibody interaction process based on an TFBG plasmonic sensor, Biomedical Optics Express, 14(11), 5921-5931, (2023).
16. H. Qu, W. Huang, Z. Lin, X. Cheng, R. Min, C. Teng, C. Caucheteur, and X. Hu*, Influence of Annealing on Polymer Optical Fiber Bragg Grating Inscription, Stability and Sensing: A Review, Sensors, 23(17), 7578, (2023).
17. H. Qu, Z. Chen, S. Gao, R. Min, G. Woyessa, O. Bang, C. Caucheteur, and X. Hu*, Femtosecond laser line-by-line tilted Bragg grating inscription in single-mode step-index TOPAS/ZEONEX polymer optical fiber, Optics Letters, 48(6), 1438-1441, (2023).
18. R. He, L. Shen, Z. Wang, G. Wang, H. Qu, X. Hu, and R. Min*, Optical fiber sensors for heart rate monitoring: A review of mechanisms and applications, Results in Optics, 100386, (2023).
19. S. Gao, H. Wang, Y. Chen, H. Wei, G. Woyessa, O. Bang, R. Min, H. Qu, C. Caucheteur, and X. Hu*, Point-by-Point Induced High Birefringence Polymer Optical Fiber Bragg Grating for Strain Measurement, Photonics, 10(1), p. 91, (2023).
20. X. Wen, Y. Liu, Q. Liu, Z. Chen, X. Hu, C. Xu, H. Chen, M. Xing, H. Qu*, and M. Zhang*, Glucose sensing based on hydrogel grating incorporating phenylboronic acid groups, Optics Express, 30(26), 47541-47552, (2022).
21. H. Qiu, J. Jiang, L. Yao, Z. Dai, Z. Liu, H. Qu*, and X. Hu, Ultrasensitive cascaded in-line Fabry-Perot refractometers based on a C-shaped fiber and the Vernier effect, Optics Express, 30(15), 27704-27714, (2022).
22. X. Chen*, W. Lin, P. Xu, L. Chen, W. Heng, X. Hu, H. Qu, J. Sun, and Y. Cui, fM-level detection of glucose using a grating-based sensor enhanced with graphene oxide, Journal of Lightwave Technology, 41(13), 4145-4152, (2022).
23. W. Lin, W. Huang, Y. Liu, X. Chen, H. Qu, and X. Hu*, Cladding mode fitting-assisted automatic refractive index demodulation optical fiber sensor probe based on tilted fiber Bragg grating and SPR, Sensors, 22(8), 3032, (2022).
24. X. Chen*, P. Xu, W. Lin, J. Jiang, H. Qu, X. Hu, J. Sun, and Y. Cui, Label-free detection of breast cancer cells using a functionalized tilted fiber grating, Biomedical Optics Express, 13(4), 2117-2129, (2022).
25. X. Hu*, Y. Chen, S. Gao, R. Min, G. Woyessa, O. Bang, H. Qu, H. Wang, and C. Caucheteur, Direct Bragg grating inscription in single mode step-index TOPAS/ZEONEX polymer optical fiber using 520 nm femtosecond pulses, Polymers, 14(7), 1350, (2022).
26. X. Hu*, Z. Chen, X. Cheng, R. Min, H. Qu, C. Caucheteur, and H. Y. Tan, Femtosecond laser point-by-point Bragg grating inscription in BDK-doped step-index PMMA optical fibers, Optics Letters, 47(2), 249-252, (2022).
27. J. Jiang, N. Zhang, R. Min, X. Cheng, H. Qu, and X. Hu*, Recent achievements on grating fabrications in polymer optical fibers with photosensitive dopants: a review, Polymers, 14(2), 273, (2022).
28. X. Hu, Y. Liu, J. Jiang, W. Lin, H. Qu, and C. Caucheteur, Tilted Fiber Bragg Grating Inscription in Boron Co-Doped Photosensitive Optical Fiber Using 266 nm Solid State Laser Pulses, IEEE Sensors Journal, 22(3), 2229-2236, (2021).
29. H. Wang, S. Gao, X. Yue, X. Cheng, Q. Liu, R. Min, H. Qu, and X. Hu*, Humidity-sensitive PMMA fiber Bragg grating sensor probe for soil temperature and moisture measurement based on its intrinsic water affinity, Sensors, 21(21), 6946, (2021).
30. X. Hu*, X. Yue, X. Cheng, S. Gao, R. Min, H. Wang, H. Qu and H. Y. Tam, Large refractive index modulation based on a BDK-doped step-index PMMA optical fiber for highly reflective Bragg grating inscription, Optics Letters, 46(12), 2864-2867, (2021).
31. H. Qiu, C. Zhao, X. Hu*, H. Chen, Q. Yu, Z. Lian, and H. Qu, Glycerol–Water Solution-Assisted Mach–Zehnder Temperature Sensor in Specialty Fiber with Two Cores and One Channel, Photonics, 8(4), 103, (2021).
32. H. Chen, X. Hu, X. Chen, Q. Yu, Z. Lian, H. Wang, and H. Qu*, In-Line Interferometric Temperature Sensor Based on Dual-Core Fiber, IEEE Sensors Journal, 21(10), 12146-12152, (2021).
33. C. Zhao, H. Qiu, H. Chen, X. Hu, Q. Yu, Z. Lian, and H. Qu*, In-fiber Mach-Zehnder temperature sensor using silicone-oil-filled dual core fiber, Sensors and Actuators A: Physical, 323, 112644, (2021).
34. H. Chen, X. Hu*, M. He, Q. Yu, Z. Lian, Z. Yang, and H. Qu, Dual-Core Fiber-Based Interferometer for Detection of Gas Refractive Index, Photonics, 7(4), 111, (2020).
35. X. Yue, H. Chen, H. Qu, R. Min, G. Woyessa, O. Bang, and X. Hu*, Polycarbonate mPOF-Based Mach–Zehnder Interferometer for Temperature and Strain Measurement, Sensors, 20(22), 6643, (2020).
36. J. Li, H. Qu, and J. Wang, Photonic Bragg waveguide platform for multichannel resonant sensing applications in the THz range, Biomedical Optics Express, 11(5), 2476-2489, (2020).
37. H. Chen, X. Hu, M. He, P. Ren, Z. Chao, and H. Qu*, Ultrasensitive gas refractometer using capillary-based Mach-Zehnder interferometer, Sensors, 20, 1191, (2020).
38. H. Qu, X. Lu, and M. Skorobogatiy*, All solid flexible fiber-shaped lithium-ion batteries, Journal of the Electrochemical Society, 165(3), A688-A695, (2018).
39. Feature Article: H. Qu and M. Skorobogatiy*, Optics on the Go: Active-Color-Changing Textiles, Optics Photonics News, September Issue, 36-41, (2017).
40. X. Lu, H. Qu, and M. Skorobogatiy*, Piezoelectric Microstructured Fibers via Drawing of Multimaterial Preforms, Nature Scientific Reports, 7, 2907, (2017).
41. X. Lu, H. Qu, and M. Skorobogatiy*, Piezoelectric Micro- and Nanostructured Fibers Fabricated from Thermoplastic Nanocomposites Using a Fiber Drawing Technique: Comparative Study and Potential Applications, ACS Nano, 11, 2103, (2017).
42. H. Qu*, J. Hou, Y. Tang, O. Semenikihin, and M. Skorobogatiy, Thin Flexible Lithium Ion Battery Featuring Graphite Paper-Based Current Collectors with Enhanced Conductivity, Canadian Journal of Chemistry, 95, 169-173, (2017).
43. J. Li, H. Qu, and M. Skorobogatiy*, Squeezed hollow-core photonic Bragg fiber for surface sensing applications, Optics Express, 24, 15687-15701, (2016).
44. H. Qu, Z.-L. Deck-Léger, C. Caloz, and M. Skorobogatiy*, Frequency generation in moving photonic crystals, Journal of American Optical Society B, 33, 1616, (2016).
45. A. K. Yetisen, H. Qu, A. Manbachi, H. Butt, M.R. Dokmeci, J.P. Hinestroza, M. Skorobogatiy, S.H. Yun*, Nanotechnology in textiles, ACS Nano, 10, 3042-3068, (2016).
46. Featured Article: H. Qu, O. Semenikhin, M. Skorobogatiy*, Flexible fiber batteries for applications in smart textiles, Smart Materials and Structures, 24, 025012, (2015).
47. H. Guerboukha, A. Markov, H. Qu, M. Skorobogatiy*, Fast rotary linear optical delay line for THz, time-domain spectroscopy, IEEE Transactions on Terahertz Science and Technology, 5, 564-472, (2015).
48. J. Li, H. Qu, M. Skorobogatiy*, Simultaneous monitoring of the real and imaginary parts of the analyte refractive index using liquid-core photonic bandgap Bragg fibers, Optics Express, 23, 22963-22976, (2015).
49. H. Qu, G. F. Yan, M. Skorobogatiy*, Interferometric fiber-optic bending/nano-displacement sensor using plastic dual-core fiber, Optics Letters, 39, 4835-4838, (2014).
50. Book Chapter: H. Qu, M. Skorobogatiy*, Conductive polymer yarns for electronic textiles, in Electronic textile: Smart fabrics and wearable technology edited by Prof. T. Dias and Prof. S. Lynch, Woodhead Publishing, (2015).
51. Book Chapter: H. Qu, J. Li, M. Skorobogatiy*, Photonic bandgap fibers – a roadway to all-fiber refractometer systems for monitoring liquid analytes, in Optofluidics, sensors and actuators in microstructured optical fibers edited by S. Pissadakis and S. Selleri, Woodhead Publishing, (2015).
52. H. Qu, T. Brastaviceanu, F. Bergeron, J. Olesik, I. Pavlov, T. Ishigure, M. Skorobogatiy*, Photonic bandgap Bragg fiber sensors for bending/displacement detection, Applied Optics, 52, 6344-6348, (2013).
53. H. Qu, M. Skorobogatiy*, Resonant bio- and chemical sensors using low-refractive-index-contrast liquid-core Bragg fibers, Sensors and Actuators B, 161, 261-268, (2012).
54. H. Qu, B. Ung, M. Roze, M. Skorobogatiy*, All photonic bandgap fiber spectroscopic system for detection of refractive index changes in aqueous analytes, Sensors and Actuators B, 161, 235-243, (2012).
55. H. Qu, M. Skorobogatiy*, Liquid-core low-refractive-index-contrast Bragg fiber sensor, Applied Physics Letters, 98, 201114, (2011).
56. H. Qu, B. Ung, I. Syed, N. Guo, M. Skorobogatiy*, Photonic bandgap fiber bundle spectrometer, Applied Optics, 49, 4791, (2010).
发表会议论文:
57. R. Zheng, Y. Zhang, X. Zhong, E. Stavrou, C. Teng, X. Chen, H. Qu, Micro-/nano-displacement and force sensor based on elastic rhombus-shaped structures fabricated on fiber tip using two-photon-polymerization, in 2025 25th Anniversary International Conference on Transparent Optical Networks (ICTON), Barcelona, Spain, doi: 10.1109/ICTON67126.2025.11125431, (2025)
58. R. Chen, S. Ma, X. Zhong, H. Qu, C. Marques, C. Caucheteur, X. Hu, Tilted fiber Bragg grating in polyimide-coated optical fiber for temperature measurement, in 2025 25th Anniversary International Conference on Transparent Optical Networks (ICTON), Barcelona, Spain, doi: 10.1109/ICTON67126.2025.11125044, (2025)
59. J. He, T. Zhu, L. Li, H. Qu, and X. Hu, Magnetic field measurement using Fabry-Perot fiber-optic sensor with 3D microstructures, Proc. SPIE 13639, in 29th International Conference on Optical Fiber Sensors, 1363975 (2025).
60. Q. Huang, S. Huang, H. Qiu, L. Htein, X. Cheng, H. Tam, H. Qu, C. Caucheteur, and X. Hu, Vernier-effect-based C-shaped fiber sensor for temperature measurement, Proc. SPIE 13639, in 29th International Conference on Optical Fiber Sensors, 136393Q (2025).
61. Z. Lu, R. Zheng, X. Zhong, X. Hu, H. Qu, Fiber-optic micro-displacement sensor probe based on Vernier effect, Proc. SPIE 13639, in 29th International Conference on Optical Fiber Sensors, 136393S (2025).
62. X. Zhu, H. Zhu, Z. Xin, X. Cheng, H. Y. Tam, H. Qu, and X. Hu, Tilted Fiber Bragg Grating Inscription in DPDS-doped Polymer Optical Fiber Using 266 nm Solid State Laser Pulses, in 2024 9th Optoelectronics Global Conference (OGC), pp. 109-111 (2024).
63. L. Tan, H. Qu, X. Chen, Y. Xu, P. Mégret, C. Caucheteur, and X. Hu, Specificity of NY-ESO-1 Antibody Detection Using TFBG Plasmonic Sensor, in Advanced Photonics Congress 2024, Technical Digest Series (Optica Publishing Group, 2024), paper JTu1A.8, (2024).
64. Y. Liu, H. Qu, C. Caucheteur, and X. Hu, Temperature Measurement Utilizing Tilted Bragg Gratings in Solution-Filled Specialty Optical Fiber, in 2024 24th International Conference on Transparent Optical Networks (ICTON), pp. 1-4 (2024).
65. X. Hu, H. Fu, P. Li, H. Qu, M. Loyez, and C. Caucheteur, UV-Glue-Assisted Cascaded Fabry-Perot Fiber Sensor for Temperature and Force Measurement, in Optical Sensing and Detection VIII, vol. 12999, SPIE, pp. 468-471 (2024).
66. Y. Zhang, S. Ma, J. Jiang, H. Qu, and X. Hu, Ultrasensitive Fiber Refractometer Based on C-Shaped Fiber and Vernier Effect, in European Workshop on Optical Fibre Sensors (EWOFS 2023), vol. 12643, SPIE, pp. 205-208 (2023).
67. W. Liang, X. Cheng, H. Qu, C. Caucheteur, and X. Hu, Bragg Grating Inscription in BDK-Doped PMMA Optical Fiber Using 266 nm Pulsed Laser, in European Workshop on Optical Fibre Sensors (EWOFS 2023), vol. 12643, SPIE, pp. 417-420 (2023).
68. S. Ma, Y. Zhang, H. Qiu, C. Zhao, X. Hu, and H. Qu, Fiber Optic Mach-Zehnder Temperature Sensor Based on Dual-Core Fiber, in European Workshop on Optical Fibre Sensors (EWOFS 2023), vol. 12643, SPIE, pp. 69-72 (2023).
69. Keynote talk: M. Skorobogatiy, X. Lu, H. Qu, J. F. Gu, S. Gorgutsa, Y. Liu, A. Skorobogatiy, A. Skorobogatiy, J. Berzowska, K. Schicker, Novel Materials and fabrication techniques for wearable energy generation and storage devices – from piezoelectric fibers to li-ion threads, Symposium of the Institute of Textile Science, Canada, (2022).
70. Invited talk: M. Skorobogatiy, X. Lu, H. Qu, J. F. Gu, S. Gorgutsa, Y. Liu, A. Skorobogatiy, A. Skorobogatiy, Compliant energy generation and storage for power-hungry wearables: perspectives and challenges, F1 Innovative Smart Materials by Soft Chemistry for Flexible/Wearable and Large-Area Electronics, International Materials Research Congress - IMRC (2022).
71. Invited talk: X. Lu, H. Qu, and M. Skorobogatiy, Piezoelectric Micro- and Nanostructured Fibers Fabricated from Thermoplastic Nanocomposites Using a Fiber Drawing Technique: Comparative Study and Potential Applications, XXVIII International Materials Research Congress, D7, Materials and Technologies for Energy Conversion Saving and Storage (MATECSS), Mexico, (2019).
72. H. Qu, X. Lu and M. Skorobogatiy, All-Solid Flexible Fiber-Shaped Lithium Ion Batteries, XXVIII International Materials Research Congress, D7, Materials and Technologies for Energy Conversion Saving and Storage (MATECSS), Mexico, (2019).
73. H. Qu, X. Lu, M. Skorobogatiy, Solid Electrolyte, Flexible Li-ion Fiber Batteries for Compliant Energy Storage and Wearable Applications, A01 Battery and Energy Technology, (AiMES) Meeting, Mexico (2018).
74. X. Lu, H. Qu, and M. Skorobogatiy, Piezoelectric microstructured fibers via drawing of multimaterial preforms, Proc. SPIE 10663, Energy Harvesting and Storage: Materials, Devices, and Applications VIII, 106630E (Presented at SPIE Commercial + Scientific Sensing and Imaging: April 15, 2018; Published: 15 May 2018).
75. X. Lu, H. Qu, M. Skorobogatiy,Novel materials and fabrication techniques for wearable energy generation and storage devices -from piezoelectric fibers to li-ion threads, Energy Materials Nanotechnology Americas Meeting, (2017).
76. T. Ma, K Nallapan, H. Guerboukha, M. Skorobogatiy and H. Qu, Dispersion Compensation in Terahertz Communication Links Using Metallized 3D Printed Hollow Core Waveguide Bragg Gratings, Coneference on Lasers and Elctro-optics, SM3J.4, (2017).
77. J. Li, H. Qu, M. Skorobogatiy, Squeezed Hollow Core Photonic Bragg fiber for surface sensing applications, Coneference on Lasers and Elctro-optics, JTu5A.95, (2017).
78. T. Ma, H. Guerboukha, M. Skorobogatiy, and H. Qu, 3D Printed Hollow Core Terahertz Optical Waveguides with Hyperuniform Disordered Dielectric Reflectors, Coneference on Lasers and Elctro-optics, JW2A.106, (2017).
79. H. Qu, and M. Skorobogatiy, Sideband generation in moving photonic crystals,6.06, Photonic North, Canada, (2017).
80. J. Li, H. Qu, M. Skorobogatiy, Squeezed hollow core photonic Bragg fiber for surface sensing applications,100.01, Photonic North, Canada, (2017).
81. H. Qu, J. Hou, X. Lu, Y. Tang, O. Semenikhin, M. Skorobogatiy, Thin Flexible Lithium Ion Battery Featuring Graphite Paper Based Current Collectors with Enhanced Conductivity,ES6.9.20, 2017 MRS Spring Meeting, USA, (2017).
82. H. Qu, H. Guerboukha, M. Skorobogatiy, Linear rotary optical delay lines, SPIE Photonics West, 9754-11, USA (2016).
83. H. Qu, H. Guerboukha, M. Skorobogatiy, Dynamic measurements at THz frequencies with a fast rotary delay line, SPIE Photonics West, 9747-27, USA (2016).
84. H. Qu, Z. Deck-Léger, C. Caloz, M. Skorobogatiy, Frequency Generation in a Moving 2-Dimensional Photonic Crystal, SPIE Photonics North, 25.40, Canada (2016) .
85. M. Andrey, H. Qu, M. Skorobogatiy, G. Hichem, Contactless Real-time Dynamic Measurements with THz waves and a Rotary Delay Line, Canadian Association of Physicists Congress, 1150024, Canada (2016) .
86. M. Andrey, M. Skorobogati, H. Qu, G. Hichem, Dynamic measurements at THz frequencies with a fast rotary optical delay line, Canadian Association of Physicists Congress, 1150026, Canada (2016) .
87. H. Guerboukha, A. Markov, H. Qu, M. Skorobogatiy, Fast rotary linear optical delay line for THz time-domain spectroscopy, 40th Int. Conf. on Infrared, Millimeter, and THz Waves, FS-57, China (2015).
88. H. Guerboukha, A. Markov, H. Qu and M. Skorobogatiy, Dynamic measurements at terahertz frequencies with a fast rotary delay line, SPIE Photonics North, June (2015).
89. H. Qu, M. Skorobogatiy, Design of the Curvilinear Reflectors for Linear Rotary Optical Delay Lines, International Optical Design Conference (IODC), IM2B.4, USA (2014).
90. H. Qu, M. Skorobogatiy, An all-fiber spectrometer using deconvolution of intensity images at the output of photonic bandgap fiber bundle, Computational Optical Sensing and Imaging (COSI), CTu2C.3, USA (2014).
91. H. Qu, M. Skorobogatiy, Micro-Displacement Sensors Based on Plastic Photonic Bandgap Bragg Fibers, Frontiers in Optics (FiO), FTh4B.4, Orlando, Florida, USA, October, (2013).
92. H. Qu, T. Brastaviceanu, F. Bergeron, J. Olesik, M. Skorobogatiy, Micro-Displacement Sensors Based on Plastic PhotonicBandgap Bragg Fibers, OSA Optical Sensors, SM2D.5, Rio Grande, Puerto Rico, July, (2013)
93. A. Markov, S. Gorgutsa, H. Qu, M. Skorobogatiy, Plasmonic Two Wire Terahertz Fibers with Highly Porous Dielectric Support, Conference on lasers and Electro Optics (Coneference on Lasers and Elctro-optics2013), CTh1K.4, San Jose, USA, June, (2013).
94. Invited talk: H. Qu, Jean-Pierre Bourgeois, Julien Rolland, Alexandru Vlad, Jean-François Gohy and Maksim Skorobogatiy, Flexible fiber batteries for applications in smart textiles, MRS Online Proceedings Library, 1489, mrsf12-1489-a04-01 doi:10.1557/opl.2013.913, (2013).
95. H. Qu, M. Skorobogatiy, Liquid-core low-refractive index-contrast Bragg fiber sensor, (BIO-SENS-6-20-3), Photonics North, Canada, (2012).
96. H. Qu, M. Skorobogatiy, All-photonic-bandgap-fiber sensor for detection of liquid refractive index, (BIO-SENS-8-50-5), Photonics North, Canada, (2012).
97. A. Markov, S. Gorgutsa, H. Qu and M. Skorobogatiy, THz wire waveguides, Plasmonics, Gordon Research Conference, Maine, USA, June, (2012).
98. H. Qu, B. Ung, M. Skorobogatiy, Photonic bandgap fiber bundle spectrometer, CM4B.4, Coneference on Lasers and Elctro-optics, San Jose, CA, USA, (2012).
99. Invited talk: H. Qu, M. Skorobogatiy, All-polymer Photonic Bandgap Bragg Fibers for Bio-chemical Sensors and Spectrometers, K-1 17th Microoptics Conference (MOC’11), Sendai, Japan, (2011).
100. H. Qu, B. Ung, and M. Skorobogatiy, Liquid filled hollow core photonic bandgap fiber sensor,in Optical Sensors, OSA Technical Digest (CD) (Optical Society of America, 2011), paper SWB6 (2010).
101. H. Qu, B. Ung, F. Boismumu, N. Guo, A. Depuis, M. Skorobogatiy, Photonic Bandgap Fiber Bundle Spectrometer Optical Sensors (Sensors) paper: SThB5, (2010).